> Homework \#11 (100 points) - Show all work on the following problems:
> (Grading rubric: Solid attempt $=50 \%$ credit, Correct approach but errors = 75\%
> credit, Correct original solution $=100 \%$ credit, Copy of online solutions $=0 \%$ credit)

Problem 1 (30 points): Find the magnetic dipole moment (magnitude and direction) of a spherical shell with radius R, carrying a uniform surface charge σ, and spinning around the z -axis with angular velocity ω.

Problem 2 (20 points): Use the formula $\vec{F}=\nabla(\vec{m} \cdot \vec{B})$ to find the force between two perfect magnetic dipoles with magnitude m_{1} and m_{2}, both lying on the z-axis, aligned in the $+z$ direction, and separated by a distance r.

Problem 3 (20 points): Find the magnetic field of an infinitely long cylinder with a uniform magnetization M parallel to its axis, for the region inside the cylinder ($\mathrm{s}<\mathrm{R}$) and the region outside the cylinder ($s>\mathrm{R}$).

Problem 4 (30 points): Consider an infinitely long cylinder of radius R , with a permanent magnetization $\vec{M}(s)=k s \hat{z}$ that increases linearly with distance from the axis to the surface. Find the magnetic field inside and outside the cylinder using two methods:

5a (20 points): Locate all the bound surface and volume currents, and use Ampere's law for B (Eq. 5.57) to calculate the field inside and outside the cylinder.

5b (10 points): Use Ampere's law for H (Eq. 6.20), and then compute B from H and M.

